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1. Introduction

Advances in molecular beam epitaxy and other crystal growth tech-

niques have allowed detailed studies of semiconductor heterostructures
[1].* In the last few years. the double-barrier resonant tunneling struc-
ture has been studied by a number of groups. This structure consists
of a thin layer of GaAs (about 50 A) surrounded on hoth sides by a
layer of AlGaAs (of similar thickness), all embedded in a GaAs crystal.
When electricaily contacted and biased, this structure displays peaks
in its current-voltage characteristic [2-13]. From the scattering point of
view, these peaks are attributed to peaks in the transmission coeflicient
[14]). In terms of the electronic structure. the double-barrier potential
confines electronic states of certain energies, creating resonances that
manifest themselves as peaks in the one-dimensional local density of
states between the barriers {15-18]. For a symumetric structure in zero
applied electric field, the states can be labelled by even or odd parity.
a = ¢ or 0, a wave vector transverse to the growth direction. k. and a
wave vector along the growth direction, ¢. associated with the solution
of a one-dimensional effective mass Schrodinger equation. The doubly
degenerate electron energy cigenvalues are given by

E =%k + ¢%)/2m,, (n

where m; is the conduction band effective mass at the I'-point (for
GaAs). For a given value of k, there are resonant values of ¢ at which
the amplitude of the wave function inside the quantum well region is
large compared with the wave function amplitude outside this region.
For wave vector values g that are not close to the resonant values.
the amplitude of the wave function inside the quantum well region
is suppressed relative to its outside value. Outside the quantum well
region, the wave function amplitude is roughly the same for energies
on- and off-resonance.

The above description of electronic states neglects certain aspects
of the problem, such as external clectric fields, scattering due to pho-
nons [19]. impurities, and electron/electron interactions. The effects of
electron/electron interactions {space-charge buildup) on current-voltage
characteristics have been discussed [20] and treated in detail within a
self-consistent scheme [21]. Inelastic scattering, and its consequences
for resonant tunneling., has also heen discussed by several authors [18,22].
However, elastic scattering due to impurities has not been treated the-
oretically, despite the fact that at liquid nitrogen temperatures, where
measurcements on double-barrier structures are frequently made. elastic

*References are listed at the end of the main body of text.
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scattering caused by charged impurities is the predominant scattering
mechanism [23]. While it is true that elastic scattering events are not
expected to have an effect on resonances that is comparable to inelastic
events, recent experiments [13] on intentionally doped double-barrier
structures show that their effect is nontrivial and needs to be better
understood. In this paper we examine, in a qualitative way, the man-
ner in which scattering rates from a single charged impurity depend
upon the electron’s initial state and the impurity’s position. Next, as-
suming there is a distribution of randomly positioned impurities, we
add the probability for scattering due to each iinpurity, resulting in a
total elastic scattering rate. We find that for a finite system size and
certain values of the parameters, such as impurity potential range, the
scattering of resonant electrons (in the limit of low electric fields) can be
dominated by impurities in the quantum well region. This is surprising
because in circumstances where sharp resonances are absent, contribu-
tions from the quantum well region are the same order of magnitude as
surface effects, which can be ignored.

In section 2 we establish our notation and briefly summarize the
form of the clectron eigenstates for a double-barrier potential. In sec-
tion 3 we use these states to compute the scattering rate due to one
impurity, and in section 4 we consider the effects of a random distribu-
tion of impurities.

2. Eigenstates

Within a one-band effective mass theory, an clectron state is represented
by a product wave function [24]

Vo kalr) = Yok, (r)u(r) = (rlo.k.q). (2)

where u.(r) is the conduction band Bloch function at the I-point (and
is taken to be the same function for GaAs and AlGaAs). and i, k(1)
are the envelope functions. For a double-barrier potential

Viz) = { V,, if a < |zl <a(l+6); (3)

0 otherwise,
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the envelope functions, normalized” to unity over a volume L3, were
previously calculated [17] and can be written

1 .
u’a.k.q(r) = z—(’Xp(Zk . P)(I)a’k‘q(z), (1)

where k = (k;, k,,0), and a labels the parity of the state, a = ¢(0) for
even (odd) parity. The z-dependent functions are given by

F;/IZ((IG) J Cos(qz)éa,e + Sin(qz)‘sa,o ':| <a
Paeqlz) = fmm 1 dulgm) exp(un(qa)z/a) + calga) exp(-w(qa)z/a) a<z<(148a  (5)
L/2 | f.(qa)expligz) + ga(qa) exp(—igz) (1468)0a<z<L)2

where é,. and 6,, are Kronecker delta functions, and the auxiliary
functions d,(u), e,(u), fo(u), go{u), and F,yx(u) are defined in ap-
pendix A. The {unction w(u) is given by

—
w(u) = (6)
( E
and carries a dependence on transverse wave vector k through
5= — (1 - Bk, (7)

Here, v is the dimensionless barrier height given by v = 2m;V,a?/h%
and g is the ratio of the effective masses, § = m,/m,, where m; is the
mass in the quantum well region and outside the barriers, and my is the
mass in the barrier region. Because the effective mass in the quantum
well region is different from that in the barrier regions, the effective
barrier height, 4, is different for each k.

The functions @, 1 ,(z) and (1/m)d®,x ((z)/dz are continuous at
the interfaces = = £a and 2 = (14 é)a. Periodic boundary conditions
in a box of area I x L have been used in the r and y directions,
so the allowed values of k = 2nx(n,,n,,0)/L, where n, and n, can
take any integer values. It is interesting to note that at sufficiently
large |k|, the effective barrier height may actually be negative. The
allowed values of the z-component wave vector, ¢. are given by the
roots of a transcendental equation whose precise form depends on the

*In normalizing the wave function, we have dropped terms of O(a/lL) and
O(aé/L). In the quantum well limit, ¥ — oc or & — oc, the function f,(qa)
has zeros at resonant values of q, and the terms O(a/L) and O{aé/L) cannot be
dropped. However, for any finite value of 4, there 1s always a large enough L so
that dropping these terms is justified. Physically, this means we are neglecting
surface effects, which can be important when the thickness of the crystal becomes
sufficiently small, or when we approach the 9 — o or § — oo limit, with L fixed.
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boundary conditions at = = +L/2. However, in the limit a/L — 0, the
density of roots approaches L/2x, and the solution of this equation is
not necessary. The energy eigenvalues associated with the state given
by equation (2), measured from the bottom of ihe conduction band.
are given by equation (1).

The envelope functions given in equation (4) contain the resonance
effects due to the presence of the double-barrier potential through the
functions F, x(u) and F, x(u). For a given k, these functions have peaks
at u = qa, for wave vector values ¢ = ¢e,1, ¢e2y e - - .. and Go1, Go.2.
403, - - -, respectively. The peaks in these functions correspond to an
even and an odd series of resonances. These functions are intimately
related to the local density of states, and have been discussed in detail
elsewhere [17]. An electron with a given transverse wave vector, k,
and ¢ close to a resonant value has a wave function with a large am-
plitude in the quantum well region and, correspondingly, a decreased
amplitude outside the barriers, so that normalization over the interval
(=L/2,4+L/2) is maintained.! An electron whose wave vector is not
near resonance has a small wave function amplitude in the quantum
well and barrier regions and, correspondingly, a larger amplitude out-
side these regions. Figure 1 shows a plot of the square of the even
envelope function, |1,k ,.(r)]?, versus z/a, for on-resonance and off-
resonance electron states. The state that has a wave vector in the
resonance region, ga = 0.80, has a large v.ave function amplitude in the
well, compared to a state whose wave vector lies outside the resonance
range, ga = 1.5.

When the resonances are quite sharp it is appropriate to speak about
resonant subbands, analogous to the two-dimensional subbands in a
quantum well structure. A resonant subband is defined by a resonant
value of ¢ (equal to one of the g.1, ge2, Ge3y -+ OF Qo Go2s Go3e ---)
and a continuous value (in the limit L — o0) of transverse wave vector
k. These resonant subbands differ from those in a quantum well in
an essential way. In a quantum well the subbands arise from truly
localized states (for encrgies below the top of the barriers), while in
a double-barrier structure the resonant subbands arise from extended
states.

'See footnote on page 7.
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Figure 1. Square of even function, L*|¢. x ,(r)I?, is plotted
versus spatial position z/a, for “on-resonance”
(ga = g.,a = 0.80), and “off-resonance” (ga = 1.5), electrons for

casc k =0,6 =1.0,y=2.0, and = 0.73.

3. Scattering Rate Due to One Impurity

The elastic scattering rate out of a conduction band state |a.k,g), to
any other conduction band state, can be found from Fermi’s golden rule

27r / 4 4
Wake =2 2 1o K\ qUlak ) 6 (Eiy ~ Bicr) . (8)

"ot kg

where U/(r) is the impurity potential.} For many impurity potentials
the matrix element in equation (8) can be approximated as a matrix
element between effective mass wave functions (see app B):

(' X, q|U

ok q) = [ P (U0 (9)

Calculation of this matrix element can be further simplified by substi-
tuting into equation (9) the explicit form of the wavefunction, given in
equation (4), and using the Fourier expansion of the potential,

U(r) = 3_U(q)exp(iq - (r = Ry)). (10)
q

YWe are not considering potentials [7(r), which couple to spin degrees of freedom:
hence we have omitted the spin labels on the electron states. The quantity w_ g .

1s the scattering rate out of a state labelled by o k. g with either spin up or down.
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where R, is the impurity position.? The r and y spatial integrations can
then be performed, leading to a two-dimensional delta function in wave
vector variables. The sum over the z- and y-wave vector components
can then be done, resulting in the following expression:

L +L/2 .
(" K, ¢'|Ula, %, ¢) = exp(—i(k' — k) R,) /—L/z dz ‘I)u,‘k.‘q;(z)d)a‘k'q(:)
S UK =k + p.2) exp(ip:(z — z,)), (11)
pz

where 2, is the z-component of the impurity position vector and Z is
a unit vector along the growth direction. The sum on p, is over the
z-component of the wave vectors appearing in equation (10), which
were used to expand the impurity potential. The z- and ycomponents
of the impurity position vector in equation (11) enter only as a phase.
Because the system is translationally invariant in the z and y directions,
there is no loss in generality if we choose the r and y components of
the impurity position vector to be zero.

Using equation (11) we can immediately make a rough estimate of
the ratio of probability for scattering of resonant electrons within the
first subband, le,k,q.1) — |e,k',q.;), to scattering out of the first
subband into the second subband, |e,k,q.1) — |o,k’,¢,.1), by noting
that the function @,y ,(z) is proportional to F;{lz(q(,'). This ratio is
proportional to the factorY

Fe,k’(q;.l a)
Fo,k’(qO.la)

and is independent of the detailed form of the impurity potential. Here
Ge.1 and qu‘ are the resonant wavevectors corresponding to transverse
wave vectors k, and k’, respectively.!! For the structure used by Sollner
et al [3], this ratio is =35, for k = k¥’ = 0.

$We assume that the impurity is located far from the walls of the box compared
to any length scale of interest.

$This result is true only for impurities located in the quantum well region. Equa-
tion (5) may suggest that at resonance the wave function is large beyond the barri-
ers, z > (1+ é)a, because Fﬂ)k(qa) is large. This is not the case hecause the factor
fa(qa), which multiplies Fo‘k(qa) in the wave function, becomes small at resonance,

leading to a wave function that is not large outside the quantum well region.
IThe resonant wave vector values §=¢qe1.9:2. 9 =9qe3, ..., and ¢,1, ¢o.2, ¢0.3,

..., depend mildly on the corresponding value of k. This is a consequence of the

different effective masses in the quantum well and barrier regions (see eq. (6)).




(o K. Ul k.q) = —— -

(n’. k' ¢'|l ok, q) =

In order to get a clearer picture of elastic scattering. we model a
charged impurity by a spherically symmetric screened Coulomb poten-
tial [25-29]:

Zetexp(=A|r—R, |)
IS [r- R, | '

where 1/X is the range of the potential, Ze is the impurity charge. R,

U(r) = (12)

1s the impurity position, and & is the static dielectic constant.  Vor
stmphicity, we are neglecting the effects of anisotropic sereemng.™ lor
this impurity potential, the sum on p, in equation (11) can be changed
to an integral and evaluated, resulting in the form

2 Lt ) gLl )
[ dz 0 )k exp(=slz — 21), (13)

L? x sJ_ip

where the effective sercening wave vector, s, depends on the transverse
momentum through the relation

= A+ (k—k)4 (1)
Using equation (13), we define the dimensionless quantity I 00 k. (20)
by
Amh? Jays I
mya? (T 1/2 Lok o kg (20)5 (15)
! ’ [,\""a"" + (k — k')2a?
where we have introduced the Bohr radius a, = ~h*/mZ¢% Calen-

lation of the function [, ko k, 18 tedious but straightforward, and
the results for an impurity located inside the quantum well region and
instde the barrier regions are given in appendix (.

In the special case when the impurity s located inside the well, or
bevond the barriers (z, > (1 + d)a), and when s is sufliciently laige
e, [k = Kla is Targe (but still (k — k')-¢ < 1. where ¢ is a primitive
lattice vector)  the matrix element can be approximated by

. A i ) l/z
sz {Foaetd'a) Foglga)}

(! K U0 kog) = D% (2P, (00, (16)

L3R A4 (k - k)2

where we have assumed sL > 1, dropping terms of order exp(—=s1./2).
This result shows that the matrix clement s large at resonant values

of initial and final electron wave vectors. where Foo(¢'a) and | (qa)

**A correet treatment of sereening in A double-barrier struciure 18 a difficult
problemin itself. We have chosen to model the impurity by a physically plausible
zeroth-order potential with as few unknown parameters as possible. Introducing
ansotropie sereening would undoubtedly introdnee more unknown parameters.

I




' .wve peaks. As |k — k’| increases, the magnitude of the matrix ele-
ment decreases. This is a consequence of the rapid oscillations in the
transverse part of the wave function that serve to diminish the integral.
We now substitute the explicit form of the matrix element given in
equation (15) into equation (8) for the scattering rate and sum over
all final states. In the limit L — oo, the density of wave vectors ap-
proaches (L/27)® per unit volume in (k, g)-space, and we can change
the sum over wave vectors to an integral over the region ¢' > 0 and
—00 < ki, k, < +o0. In cylindrical coordinates, we do the ¢ integra-
tion, leading to the following expression for the scattering rate:
(2 Salz) (7)

Wokg = ——>
Kiq 2
nllao

where

1 1

[‘}2+52]1/2 dk’ I:’ +1
Sa.k.q(~o) = /0 o /(; dr\/l___?[p_ + ¢ - 1’\./2]1/2

: Z [G(a', /}',(j:a. k.g;z)+ G(a',i;',q;a,/},q: —I)]. (18)

a'=e.,0

In equation (18) we have introduced the dimensionless function

. . 1
Gl K. ¢ ak, ¢ x

. : -~ [1’ Vgl 20 2, 1
3(1 ) /\2(17 + (k —k’)2(12 © .k gy .kJI( )| ( 9)

and the dimensionless wave vectors & = lk|a, o= K'la, ¢ = qa. In
the integrand of equation (18), the functions (7 are >valuated at ¢’ = ¢,
where ¢ = [/;2 + ¢* - }1?’2]‘/2. The integration is over the dimensionless
final transverse wave vector, &', and 7 = cos(¢), where ¢ is the angle
between thie initial and final wave vectors, k and k’. 'The integration
over & has a finite upper limit, a consequence of energy conservation.
The double integeal in equation (18) was done numerically. and the
results are shown in figures 2 ¢ - d 3. for parameters characterizing the
structure used by Sollner et al [3]. for an impurity potential range
I/A = 10a.

The solid curve mn figure 2 is the scattering rate out of an even state.
The peak at ga = 0.898 (off the scale) is due to the lowest energy even
resonance, while the peak near ga = 2.0 is due te the next higher en-
ergv even resonance. The dashed line shows the scattering rate out of
odd states, and the peak at ga = 1.66 is due to the lowest energy odd
resonance. As one would expect, the peaks in the even and odd scatter-
ing rates alternate with increasing wave vector. For this structure and
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potential range, the ratio of the scattering rate at the largest even peak
to the largest odd peak is approximately 100. The dotted line in figure
2 shows the scattering rate out of even states in a bulk semiconductor
(where ¥ = 0 and § = 1) with the same range potential 1/A = 10a.
The large scattering rate near ¢ = 0 is due to the Coulombic nature
of the impurity potential (there would be a divergence for 1/A — o).
Electrons which occupy states near the lowest energy resonance expe-
rience scatterings 3000 times more frequently than occurs in the bulk.
For a longer range potential, the peaks in the scattering rate would be
less pronounced. However, the overall scattering rate would be bigger
because of increased wave function and impurity potential overlap. Be-
cause of the large scattering rates for states near resonance, we expect
that the local density of states, averaged over the quantum well region,
can be significantly modified from that calculated without impurities
[15,17).

Q
@
o
CT g-{ ’7:2.54
= o a=e 5
o S | B
i - vy=00
l - =254
N‘Uo;‘.pc 8 a=e o
gld) "ﬂ a=0
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s °7
o
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O T

0.0 05

qa

Figure 2. Dimensionless scattering rate, w, k ,(ma2L?)/
(8ha?), is plotted versus qa, for an impurity located at center of
quantum well, z, = 0. Solid and dashed curves are scattering
raves out of even and odd states, @ = e and o = o, respectively,
for k = 0 and barrier height V, = 0.23 eV, cffective mass in
quantum well m; = 0.067, § = 2.0, # = 0.73, and impurity
potential range 1/X = 10a. For case a = ¢, peak at ga = 0.898 is
ofl the scale, reaching a maximum value of ~ 3000, in units on
graph. Dotted curve is scattering rate in absence of a
double-barrier structure, ¥ = 0.0, # = 1.0, for a potential range
1/XA = 10a.
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<
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= 0.897, for same structure as ‘. :
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solid curve shows position of 00 10 20 30
barrier. Zo/a

Figure 3 shows a plot of the scattering rate as a function of impurity
position for states in the range of the lowest energy even resonance.
Impurities ncar the center of the quantum well give a somewhat larger
rate of scattering than those near the edges, because of the peaked
nature of the even wave functions. However, for this potential range,
this is a minor effect. In the calculations above, we made a somewhat
arbitrary choice of the potential range: 1/A = 10a. For a shorter range
potential, the dependence of the scattering rate on impurity position
would be stronger than that shown in figure 3; however, the overall
values of the scattering rates would be smaller because of decreased
overlap of the impurity potential with the electron wave functions.

4. Random Distribution of Impurities

The total scattering rate, W, k., due to a macroscopic number of ran-
domly distributed impurities can be found from the one impurity scat-
tering rate in equation (17) by summing over impurity position vectors
R,. This can be seen by considering the matrix element of the total
potential, [/n,, which is a sum of N, one-impurity potentials, each cen-
tered about a position vector R, from a set of N, random position'!

M the impurities are substitutional then these vectors coincide with crystal
lattice sites,




vectors, {R,}. The matrix element for scattering from N, impurities is
then a sum of single impurity matrix elements, each given by equation
(11), and can be written as

(o', k', ¢'|Un ], k, q) = Z exp(—tK - R,)A, p(20). (20)
{Ro}

where we have introduced the shorthand notation K = k' ~ k, p =
- {o,k,q} and p’ = {o',K',¢'}. The absolute square of this matrix ele-
ment can then be written as

o', K, ¢'|Un, |k, q) P = 3 ZGXP (—K-(R,~R,) A, (z,) A5 ().
(Ro) (R1)

For a macroscopic number of impuritics at random positions. the phases
in the sum above add incoherently, resulting in a sum that is close to
zero except when R, = R} or K = 0. These two conditions lead to two
terms,

o' K g WUn ok @)* = 30 [Appr (o) + | D2 Apr(20)]® ks (21)
{R,} {R,}
respectively, where the sums are over the z,-components of the set of
random impurity positions. The second term is negligibly small because
the random phases cancel in the summation over z,. Substitution of the
first term into Fermi’s golden rule yields a total scattering rate which
is a sum of single impurity scattering rates, given in equation (17).

In a bulk semiconductor the single impurity scattering rate w, k 4(z,)
is roughly independent of position z,, leading to a total scattering rate
proportional to impurity density n; = N;/L>. However, in a double-
barrier structure the function S, i ,(z,) can have a strong spatial de-
pendence in the quantum well region because of the presence of the
resonances. For on-resonance (off-resonance) electrons the wave func-
tion amplitude in the quantum well region is large (small) compared to
outside this region, leading to a large (smaii) contribution to the total
scattering rate from impurities in the quantum well.

The sum of equation (17) over impurity positions z, can be ap-
proximated by the factor n; times an integral over the crystal volume.
Integration over the z,,y, coordinates contributes a factor L2, resulting
in a total scattering rate that can be written as

184
o
~—

, a a . )
w(,,k.,,zmla n@(7 [, Somalzddlzofa) + 3 [ Soscalzd(zi/a). (
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where the integration region R, is the well plus barrier, |z,/a] <1+ é,
and R, is the region outside the barriers, 1 + 6 < |z,/a| < L/2a.

The first term in equation (22) gives the contribution to the total
scattering rate from the quantum well (and barriers) region, and the
second term gives the contribution from the rest of the crystal. Since
the quantum well forms a negligible volume fraction of the whole crystal
volume, it may appear at first sight that the first term is O(a/L) times
the second term, and hence is completely negligible. This is true for
electrons that are in states away from the resonance regions. However,
electrons with wave vectors that satisfy the resonance conditions (see
sect. 1) may have a macroscopic fraction (i.e., not O(a/L)) of their
normalization in the quantum well region.* For resonant electrons,
this leads to a situation where the contribution to the total scattering
rate from impurities in the quantum well region, given by the first term
in equation (22), is comparable to the contribution from the rest of the
crystal, given by the second term. This is essentially a finite size effect.
As expected, for sufficiently large crystals, L — oo, the second term
always becomes larger. We find that for a sample whose total thickness
is 30 p, with 40-A well and barriers, and an impurity potential range
1/X = 10a, the first term is comparable to the second.

5. Conclusion

Within the framework of a simple model, we explored elastic impurity
scattering for electrons in resonant states. We found that for certain
parameters, such as screening length and well and barrier widths, im-
purities in the quantum well region can contribute significantly and
even dominate the scattering rate, despite the fact that a quantum
well occupies a negligible volume fraction of the crystal. We have used
a simple model of isotropic screening which is an oversimplification.
Proper treatment of screening in a double-barrier structure is in itself
a difficult problem. We have also ignored effects associated with space
charge, external electric field, and band nonparabolicity.

Acknowledgments

The authors thank Arnold Glick for useful discussions and R. G. Hay
for help with running the computer programs.
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Appendix A. Functions in Equation (5)

The functions in equation (5) in the main body of the text are
defined below:
1
do() = 5 exp(—0(u))na (u)

1
ealt) = 5 exp(w(u))éa(u)

folu) = iexp(——i(l + 6)u){exp(w(u)5) (1 + -ﬂ—tfl(ti)—) Na(u) + exp(—w(u)é) (1 — ﬁuj(u)) gn(u)}

{exp(w(u)é) (1 - Bw(u)) Na{u) + exp(—w(u)é) (1 + ﬂl;f;”) £a(u)}

gol) = 7 expli(1 + 6)) -

Ne(u) = cos(u) ~ L sin(u)

Bw(u)

No(1) = sin(u) + B

cos(u)

u
£e(u) = cos(u) + sin(u
(1) = cos(u) + s sinfu
u
é.(u) = sin(u) —
S
The function F, x(u) in equation (5), correct to zeroth order in

a/L, can be written as

cos(u).

Fa.k(u) = D (U)

For a = e, the function D.(u), in the denominator is given by

u'Z

De(u) = u* + % (87 + (1= B (” TG —w)

sinz(u)) (cosh (26w (u)) — 1)

(ﬁ:7 +(1 - ﬁ)ug) usin(2u)sinh (26w(w)) .

1
_Qﬁw(u)

For a = o, the function D,(u) can be obtained from D, (u) by the

replacements sin(u) — cos(u), cos(u) — —sin(u), and sin(2u) —

— sin(2u).
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Appendix B. Impurity Matrix Elements

For many interesting impurity potentials the matrix element in
equation (8) (see main body of text) can be expressed as a ma-
trix element between envelope functions. This can be shown by
changing the integration over all space to a sum over all lattice
vectors R and an integral over a single primitive cell of volume ©:

(o', K, ¢'|Ula,k, ) = /dw g (7 + RIU(E + R)U(r 4+ R joo(r + RJuc(r + R). (B —1)

The envelope functions vary slowly over a primitive cell, so they
can be expanded about an arbitrary lattice vector, 1, x ,(R4r) =
Yokqg(R) + Voo kqe(R) - r + -+, while the Bloch functions are
periodic, u.(r + R) = u.(r). Using this in equation (B-1) and
keeping only the first term, we have

(o K, ¢'|U]a,k, g) /d3r]uc PU(r + R)% 0 (R) o g o(R). (B —2)

We now Fourier expand the impurity potential in plane waves
as in equation (10) of the text. In this expansion q takes the
values (nz,ny,n,)2n/L, where n,,ny,n,, are integers. Using this
expansion in equation (B-2) we get

(@' K q' Uk, q) = 3 U(@) ¥ explia - (R = Ro))¥rse g (R)aka(R) [ drluclr) expliq-r).
q R v
(B —3)

If we assume that U(q) = 0 for |q| > g., where g, is some cutoff
wave vector that satisfies g. < 1/|c|, and ¢ is a primitive lattice
vector, we can cut off the sum on q, in equation (B-3), at |q| = ¢..
For all r within a cell we have q-r <« 1, so we can expand the
exponential in equation (B-3), keeping only the first term, and
write

/d3r|u Yexp(iq-t) = v + O(q.|R]).

where we are assuming that the Bloch functions are normalized to
v over the primitive cell. Using these approximations in equation

21
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(B-3), changing the sum on R to an integral over the crystal

volume £,
03 —*/ &R, (B —5)
R Q

we can write the matrix element in equation (B-3) approximately
as given in equation (9) of the text. Note that a delta-function
impurity potential does not allow this simplification.
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Appendix C. Definition of the Function I,y /.,

In this appendix we give the explicit form of the quantity I, s ;1.0 k.4(20)-
introduced in equation (15) of the text. When the impurity is in-
side the quantum well region, 0 < z, < a,

1 1

. exp(—s+1(g+4')) -1
Z[Dc.'(q’a)Dc.(qa)]‘”{(z) - e

-s+1(q+q')

ata’

]a’,k"q';a,k,q(zo) = aq /], Rotor [exp( —8z,)

exp(—s +i(g—q')) — 1
—s+i(qg—4q')

+ (=1)% exp(—sz,)

exp(—s +i(q +¢')) —exp[(=s + ilqg + ¢'))=,]

+ (=1)°** exp(sz, ,
(1) expsz.) T

exp(~s +1(q — q')) —exp[(—s + i(qg — ¢'))z,]

+ (—1)* exp(sz,) P pa—

1 —exp[(s +i(q + q')) 2]

(1ot —sz, :
(=) exp(—szg) =PI

— (1) exp(—sz,) exz[fiqiglqj)q ))ZO]]
expl(—s + A + \")8a] — 1

1 '
+ lexp(s(zo 1) 4+ (1) exp(=s(zo + D)] [f(q'a) la(ga) =m0

e - expl(=s + A = A™)6a] ~ 1
+ £(q'a)la(qa) Pl —5+A—/\')' |

exp{(—s — A+ A")6a) =1 . . )exp[(—s — XA =A")éa] -1

+ 73.(¢'a) €. (qa) EPu S + &(q'a)€alqa P S

£ Jrda) folqa) SRz
s—1(q—q')

exp(—séba)

4 é;'(q'“)fa(q“)s_—m

. xp(~sé , xp(—sé
b 3ulaa) S el g g SEE),
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fosestikal %) = 305 D rqaprr L7 000 P2 |

When the impurity is inside the barrier region, « < z, < (1 +46)a.

1 1 exp(—s+i(¢+4¢')) —1

—s+1(g+¢')

o exp(—s +i(qg—q')) — 1

+ (1 :
( -5 +1i{qg—¢')

exp[(=s + A + A")ab] — 1
—s+ A+ A"

1 '
(=D exp(=s(z, + 1) [ ('a) Ra(qa)

+ €(qa) ﬁa(qa)exp[(_i::‘)\__)\xl).a‘g] -1

exp[(—s — A+ A"")ad] — |
—8— A4 A"

+ i2(q'a)€a(qa)

)exp[(—s — A~ A")ad] - l}

+ £(g'a)€a{qa S e

1

+ 2 expl=s(z = D) [ da) gy SR EAE AT Z D 2 L

s+A+ A"

expl(s+ A = A*)(z —1)] =1

+ &lq'a) falqa) SH+A =N

g oxpl(s ~ A+ XYz, = 1)] = 1
+ ilda) €a(ga)” plls ,q-—/\+)()\" !

. . expl(s — A = AWz, — 1)] = 1
b Gl g TR A2 NG - D2 Ly




e —

exp[(~s + A+ A")ad] —exp[(—s + A+ A" )(z, — 1)]
—s+ A+ A"

+ = expl(slz — 1)[Tad'a) holga)

- -~ -\ - s+ A= A")(z —
P EATAC L CEELT EY ENSEL LTI

expl(—=s = A+ A")ad] — exp[(—s — A+ A")(z, — 1)]
-8 — /\ + AI-

+ () €u(qa)

expl(—s ~ A — X*)ad] —exp[(—s— A = A")(z, — 1)]]
—s—=A=A\"

+ £.(q )€ (qa)

fold'a) fi(qa)

1 !
— — exp(—sa(l + 5))(exp\szo) + (=1)*e cxp(—s:a)> [_S Tp—

a

Gild'a) falga)  fi(d@) Galqa)  §olq'a) Golqa) .
2 : (=2
* —s+1(qg+q) —s—1(q+¢q) * —-*—i(q—q’)” ( )

In equations (C-1) and (C-2) we have introduced the functions

Nalga) = qan,(qa),

£.(qa) = qat,(qa),
falga) = 2qa expliga(6 + 1)]fa(ga),

Jalqa) = 2qa expl~iga(é + 1)]ga(qa).

1
A= —w .
au(qa),

where 1,(ga), €(qa), fa(ga). go(ga). and w(u) are defined in ap-
pendix A and equation (6), respectively. When these functions
appear with primed subscripts, the final state value of the trans-
verse wave vector (= k') should be used in their definition. The
parameter A, for the final state, is defined by A" = w(q'a)/a.
where k' is used in equation (7) in place of k. We have also in-
troduced the operator R,. which operates on a complex number
z according to the definition R,z = = (—1)¥z*. where a is an
integer. In equations (C-1) and (C-2) we use the convention that
a = 0 for an even state and a = 1 for an odd state.
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